
Egg

An Easy Generator-Generator
for 'xml-to-text' transformations

Alexander Knecht

Translation by Matthias Nott
*

June 19th, 2002

* The ideas presented in this paper have been developed by Alexander Knecht, www.generia.de. I

have only translated the documentation, and I owe a lot of gratitude and respect to Alexander for
putting his code in the public domain.

An Easy Generator-Generator for 'xml-to-text' transformations

History

Version Status Date Author(s) Description

0.1 Working 01.06.01 A. Knecht First Draft

0.2 Working 26.07.01 A. Knecht Added chapter ‚Installation’

1.0 Released 13.01.02 A. Knecht Cosmetics

1.1 Working 19.06.02 M. Nott Translation, additions

1.2 Released 27.03.05 A. Knecht Title adapted.

An Easy Generator-Generator for 'xml-to-text' transformations

Contents
HISTORY.. II

1 MOTIVATION.. 1

2 GENERATOR DEVELOPMENT PROCESS.. 2

3 GENERATOR DEFINITION... 9

3.1 LINE MARKER... 9
3.2 PATH EXPRESSIONS... 9
3.3 DIRECTIVES.. 11

3.3.1 Pattern-Definition.. 11
3.3.2 Pattern-Application ... 12
3.3.3 Further Directives ... 14
3.3.4 Pattern Sets ... 14

4 INSTALLATION .. 14

REFERENCES... 17

An Easy Generator-Generator for 'xml-to-text' transformations

1 Motivation
This document describes the tool Egg for generating Generators. These generators
receive an XML-file as input and write their output to text files. The transformation
of the XML-contents can be freely programmed using Java. Besides Java knowledge,
it is sufficient to have a fundamental knowledge about XML, and regular expres-
sions, to create generator definitions. An understanding about the XSL idea is help-
ful; see e.g. [1] and [2].

The Generator definition principally corresponds to an XSL style sheet. Using path
expressions, nodes in the XML source file are referenced, and their data is read. This
data can be manipulated as wished, and the result can be sent to the output. This
raises the following question:

Why introduce a new tool instead of just using XSL?

1. Limited programming model

XSL has its own programming language to describe the transformations. More
complex functions quickly become unreadable due to their embedding in XML
tags. The standard base functions deliver only a limited set of functionality. In
addition, it is not possible to define subroutines or e.g. to import library func-
tions.

Egg-Approach:

The Style Sheet functionality (matching of path expressions in XML files, con-
trol of the output) is embedded in a well-known, ubiquitous programming lan-
guage. Thus, all features of the programming language and –environment can be
used. The learning effort is significantly reduced.

The tool presented here uses Java as the embedding language. Other languages
would likewise be possible (‘Egg for Perl’, ‘Egg for Tcl’, …).

2. No Whitespace Control

XSL does not deliver a sufficient control over whitespaces in the output stream.
Since the focus is put on the transformation of XML trees, it seems no particular
emphasis was placed on the control of whitespaces in the output.

Egg is particularly fit for building code generators. In this szenario, it is impor-
tant to effectively use line breaks, indentations and tabbings where needed.

An Easy Generator-Generator for 'xml-to-text' transformations

Egg-Approach:

Generally, any generated source code should be human readable and look as if it
had been written by hand. This means, the optical representation of whitespaces
must be maintained in the generator output, and thus it must be possible to define
the whitespaces in the generator definition.

3. Generator-Output cannot be used directly as a Generator-Definition.

XSL style sheets have to be written in XML format. This means, the generator
output has to go in addition from the XSL style sheet to the XML parser of the
XSL transformer. For this reason, normal text passages of the generator output
must be put in CDATA sections, so that the link between generator output and
representation of that output in the generator definition is no longer directly pre-
sent.

Egg-Approach:

During the development process of (Code-) Generators, in the first place, the
code that will later be generated is written by hand and tested on the target envi-
ronment. This represents the prototype for the generator output, in which pattern
are recognized and parametrized in order to get to the generator definition.

The target is to alter the already working code prototype as little as possible to
spead up the generator creation and to reduce errors while transforming the pro-
totype into the generator definition.

2 Generator Development Process
The driving force for building generators is very often the wish to separate content
from presentation. In the context of code generation, this means decoupling business,
application specifical requirements from technical design decisions, and to allow to
separately maintain both.

To develop a generator, the following methodology has proven to be efficient. These
four Stepps of a generator definition are afterwards described with an example.

1. Prototype-Creation: As the first Stepp, a prototype of the generator output is cre-
ated and tested in the target environment.

2. AT-Analysis: In the output prototype, the application specific items (A) are iden-
tified and differentiated from the text areas (T) which are required for technical
reasons.

3. Pattern-Definition: The A- (Application) and T- (Text) parts are exported to two
files, and redundancies are eliminated. The A-places are parametrised in the T-
part and summarised in an XML document. The parameter names from the T-part
reappear as attribute names in the XML document, in order to create the refer-
ence to the A-part.

Methodology

An Easy Generator-Generator for 'xml-to-text' transformations

4. Generator-Definition: In this step, the pattern definitions are connected to the re-
quired XML node sets using path expressions, and the ordering in the sample ap-
plication is defined. Moreover, the transformation logic for XML content that is
eventually required for the generator output is added, and the output files are
specified.

In the context of a web application, each dialog is represented by a Java class which
represents the bridge between the user interface and the application core. In this so-
called dialog model, each dialog field has two attributes. One of these represents the
dialog element on the user interface (Widget), the other saves the value which the
data field contains for the application core. The dialog model class contains, in addi-
tion, a constructor which initialises the attributes, as well as getters that access the
dialog fields and getters/setters for the data fields.

In the example, a generator definition is created to generate the dialog model classes.

Figure 1 shows the prototype of the generator output for the dialog ‘Usermanage-
ment’. Through the ‘Usermanagemenht’-dialog, the contact data of a user are man-
aged. The dialog contains the dialog fields ‘Title’, ‘Surname’, ‚Firstname‘, ‚Street‘,
‚ZIP‘, ‚City‘, ‚Phone‘, ‚Fax‘, ‚Email‘ und ‚Organisation‘. For the creation of the dia-
log model prototype, only the dialog fields ‘Title’ and ‘Surname’ are implemented.

Figure 2 shows the output prototype after the AT analysis. All technical terms are
marked. The T-part remains unchanged.

In figure 3, the A-terms are replaced by parameters, and redundancies created by this
process are eliminated. The parameter names appear in angle brackets.

In figure 4, the A-parts being ‚factored out’ are consolidated in an XML document.
The additional dialog fields that are still missing in the prototype, are added.

Figures 5 and 6 show the formulation of the Egg-directives for the parametrized pro-
totype from figure 3. The ‘generator’ and ‘apply’ directives define an output pattern.
The syntax is similar to a Java method definition. In the parameter list of the pattern
definition, the XML node is referenced using path expressions. The XML node is the
context for the sample application. The pattern expressions begin with a slash ‘/’.

Inside the ‚generator’ directive, the node variable ‘Dialog’ is linked to the XML node
‘Dialog’ from figure 4. Through the ‘apply’ directives, all XML nodes that fall in the
current context (‘Dialog’ node) are matched. These are e.g. the dialog fields ‘Option-
group’, ‘Entryfield’ and ‘Selectfield’.

Inside the pattern definition, a number of variable definitions occur. On the right
hand side of the assignment, the access to Egg-variables, XML-elements and -
attributes are set in angle brackets. The ‚File’ variable in the second line defines the
output file.

In order to now generate the dialog model generator, the generator definition is saved
as ‚DialogmodelGenerator.egg’ and passed as a parameter calling the Egg tool. This
tool generates a ‚DialogmodelGenerator.bat’ file which can be called with the XML
file as a parameter, triggering the actual creation of the generator output which ap-
pears, in our case, in the ‘UsermanagementDM.java’ file.

Example

Prototype-
Creation

AT-Analysis

Pattern-
Definition

Generator-
Definition

An Easy Generator-Generator for 'xml-to-text' transformations

Figure 1: 'Prototype of the Generator-Output'

import de.vkb.framework.datatypes.*; // Datafield-Types
import de.vkb.framework.dialog.*; // Dialogfield-Types

public class UsermanagementDM extends DialogModel {

 // Datafields
 private Title mTitle;
 private Text mName;

 // Dialogfields
 private Optiongroup mTitleDF;
 private Entryfield mNameDF;

 // Constructor
 public UsermanagementDM() {

 // Initialize Datafields
 setTitle(Title.EMPTY_TITLE);
 setName(Text.EMPTY_TEXT);

 // Initialize Dialogfields
 mTitleDF = new Optiongroup("Title");
 mNameDF = new Entryfield("Surname");
 }

 // Getter for Dialogfields
 public Optiongroup getTitleDF() {
 return mTitleDF;
 }
 public Entryfield getNameDF() {
 return mNameDF;
 }

 // Getter/Setter for Datafields
 public Title getTitle() {
 return mTitle;
 }
 public void setTitle(Title pTitle) {
 mTitle = pTitle;
 mTitleDF.setValue (pTitle);
 }

 public Text getName() {
 return mName;
 }
 public void setName(Text pName) {
 mName = pName;
 mNameDF.setValue (pName);
 }
} // end-of Dialogmodel 'Usermanagement'

An Easy Generator-Generator for 'xml-to-text' transformations

Figure 2: 'Prototype of the Generator-Output following AT-Analysis'

import de.vkb.framework.datatypes.*; // Datafield-Types
import de.vkb.framework.dialog.*; // Dialogfield-Types

public class UsermanagementDM extends DialogModel {

 // Datafields
 private Title mTitle;
 private Text mName;

 // Dialogfields
 private Optiongroup mTitleDF;
 private Entryfield mNameDF;

 // Constructor
 public UsermanagementDM() {

 // Initialize Datafields
 setTitle(Title.EMPTY_TITLE);
 setName(Text.EMPTY_TEXT);

 // Initialize Dialogfields
 mTitleDF = new Optiongroup("Title");
 mNameDF = new Entryfield("Surname");
 }

 // Getter for Dialogfields
 public Optiongroup getTitleDF() {
 return mTitleDF;
 }
 public Entryfield getNameDF() {
 return mNameDF;
 }

 // Getter/Setter for Datafields
 public Title getTitle() {
 return mTitle;
 }
 public void setTitle(Title pTitle) {
 mTitle = pTitle;
 mTitleDF.setValue (pTitle);
 }

 public Text getName() {
 return mName;
 }
 public void setName(Text pName) {
 mName = pName;
 mNameDF.setValue (pName);
 }
} // end-of Dialogmodel 'Usermanagement'

An Easy Generator-Generator for 'xml-to-text' transformations

Figure 3: 'Parametrized Prototype Output'

import de.vkb.framework.datatypes.*; // Datafield-Types
import de.vkb.framework.dialog.*; // Dialogfield-Types

public class <Dialog>DM extends DialogModel {

 // Datafields
 private <Datatype> m<Fieldname>;

 // Dialogfields
 private <Fieldtype> m<Fieldname>DF;

 // Constructor
 public <Dialog>DM() {

 // Initialize Datafields
 set<Fieldname>(<Datatype>.EMPTY_<DATATYPE>);

 // Initialize Dialogfields
 m<Fieldname>DF = new <Fieldtype>("<Label>");
 }

 // Getter for Dialogfields
 public <Fieldtype> get<Fieldname>DF() {
 return m<Fieldname>DF;
 }

 // Getter/Setter for Datafields
 public <Datatype> get<Fieldname>() {
 return m<Fieldname>;
 }
 public void set<Fieldname>(<Datatype> p<Fieldname>) {
 m<Fieldname> = p<Fieldname>;
 m<Fieldname>DF.setValue (p<Fieldname>);
 }
} // end-of Dialogmodel '<Dialog>'

An Easy Generator-Generator for 'xml-to-text' transformations

Figure 4: 'Application Specific Part as XML Document'

<?xml version="1.0" encoding="ISO-8859-1"?>
<Dialog Name="Usermanagement">
 <!-- Dialogfields aus Prototype der Generator-Ausgabe -->
 <Optiongroup Name="Title" Datatype="Title"/>
 <Entryfield Name="Name" Datatype="Text" Label="Surname"/>

 <!-- weitere Dialogfields for die Generator-Ausgabe -->
 <Entryfield Name="Firstname" Datatype="Text"/>
 <Entryfield Name="Street" Datatype="Text" Label="Street"/>
 <Entryfield Name="ZIP" Datatype="Text"/>
 <Entryfield Name="City" Datatype="Text"/>
 <Entryfield Name="Phone" Datatype="Phone"/>
 <Entryfield Name="Fax" Datatype="Phone"/>
 <Entryfield Name="EMail" Datatype="EMail" Label="E-Mail"/>
 <Selectfield Name="Organisation" Datatype="Text"/>
</Dialog>

An Easy Generator-Generator for 'xml-to-text' transformations

Figure 5: 'Generator-Definition for the Prototype (Part 1) '

.generator DialogmodelGenerator (Node Dialog = </Dialog>) {
 .File outputFile = <Dialog> + "DM.java";
 import de.vkb.framework.datatypes.*; // Datafield-Types
 import de.vkb.framework.dialog.*; // Dialogfield-Types

 public class <Dialog>DM extends DialogModel {

 // Datafields
 .apply DatafieldDefinition (Node Field = </.>) {
 .String Datatype = </Datatype>;
 private <Datatype> m<Field>;
 .}

 // Dialogfields
 .apply DialogfieldDefinition (Node Field = </.>) {
 .String Fieldtype = <Field>.getDomNode().getNodeName();
 private <Fieldtype> m<Field>DF;
 .}

 // Constructor
 public <Dialog>DM() {

 // Initialize Datafields
 .apply DatafieldInit (Node Field = </.>) {
 .String Datatype = </Datatype>;
 .String DATATYPE = <Datatype>.toUpperCase();
 set<Field>(<Datatype>.EMPTY_<DATATYPE>);
 .}

 // Initialize Dialogfields
 .apply DialogfieldInit (Node Field = </.>) {
 .String Fieldtype = <Field>.getDomNode().getNodeName();
 .String Label = </Label>.equals("") ? </Name> : </Label>;
 m<Field>DF = new <Fieldtype>("<Label>");
 .}
 }

 // Getter for Dialogfields
 .apply DialogfieldGetter (Node Field = </.>) {
 .String Fieldtype = <Field>.getDomNode().getNodeName();
 public <Fieldtype> get<Field>DF() {
 return m<Field>DF;
 }
 .}

An Easy Generator-Generator for 'xml-to-text' transformations

Figure 6: 'Generator-Definition for the Prototype (Part 2)'

3 Generator Definition

3.1 Line Marker

A Generator Definition is line based. From the development process of a generator
one can see that in the first step, the generator output is directly copied from the out-
put prototype. Then, additional lines are added to specify the structure and function-
ality of the generator. The generator directives are distinguished from output lines by
the Egg line marker.

The Line marker is a single character with which all lines containing egg directives
have to start. Whitespaces at the beginning of these lines are allowed. The ‘genera-
tor’ directive defines the line marker, i.e. the character preceding the ‚generator’
keyword is the line marker for the entire generator definition. In figure 5, the dot ‚.’
was used.

3.2 Path expressions

Path expressions serve to reference nodes in the XML input document. Their syntax
follows regular expressions which are used for pattern recognition in character
strings.

The Egg path expressions are kept very simple in order not to complicate unnecessar-
ily their processing by the Egg tool. Yet, it has become apparent that more complex
path expressions may well be useful in certain cases. For this reason, it makes sense
to replace the Egg path expressions by XPath expressions in a later version of the
tool (siehe [3]).

 // Getter/Setter for Datafields
 .apply DatafieldGetterSetter (Node Field = </.>) {
 .String Datatype = </Datatype>;
 public <Datatype> get<Field>() {
 return m<Field>;
 }
 public void set<Field>(<Datatype> p<Field>) {
 m<Field> = p<Field>;
 m<Field>DF.setValue (p<Field>);
 }

 .}
 } // end-of Dialogmodel '<Dialog>'
.}

An Easy Generator-Generator for 'xml-to-text' transformations

The following figure 7 shows the syntax for the Egg path expressions in the Backus-
Naur-Form:

Figure 7: 'BNF for Egg Path Expressions'

A Name of a Node either is the name of an XML element or the name of an XML
attribute. Thus, the type of the XML node is not differentiated. A path of a node is
the path through the node tree from a context node (exclusively) down to the node
itself (inclusively). For example, the node paths to the dialog fields ‘Title’ and ‘Sur-
name’ from figure 4 relative to the root of the document tree are seen as: � /Dialog � /Dialog/Optiongroup � /Dialog/Optiongroup/Name � /Dialog/Optiongroup/Datatype � /Dialog/Entryfield � /Dialog/Entryfield/Name � /Dialog/Entryfield/Datatype � /Dialog/Entryfield/Label

The Value of a node is, for XML attributes, the value of the attribute. For XML ele-
ments, the node value is retrieved from an attribute that can be defined. The default
attribute is ‚Name’. The default attribute and the value retrieval can be defined more
in detail through a number of options.

A path expression now is a pattern used to describe a set of node paths. It contains
single steps which can be seen as test conditions for node names. A node path
matches a path expression, when the test conditions for all single steps are fulfilled.
The node list for a path expression contains all nodes of which the node paths rela-
tive to a context node match the path expression.

For this pattern test, the path expression is traversed step by step, comparing each
step with the node path. If the node names match, the test condition for the single
step is fulfilled and the next step in the path expression can be verified.

The test for a single step can be influenced by modificators. With the NOT-operator
‘^’, the condition is met when the node names are unequal. With the ‘?’ operator, the
condition becomes optional, i.e., the single step may or may not be in the node path.
The ‘*’ says that the single step can appear any number of times in the node path
(even not at all).

Syntax

 path-expr := "/"
 | path-expr-step
 | path-expr-step "/" path-expr

 path-expr-step := [not-operator] node-name [axis-specifier]

 not-operator := "^"
 node-name := <XML-Nodename> | "."
 axis-specifier := child-or-self-axis | descedant-or-self-axis
 child-or-self-axis := "?"
descendant-or-self-axis := "*"

Semantik

An Easy Generator-Generator for 'xml-to-text' transformations

In addition, a list of alternatives can be given as a node name. The possibilities are
encapsulated in round brackets and separated by ‘|’. The test condition is met, when
the node name matches at least one entry of the list. Finally, the dot ‘.’ Can be given
as a wildcard. This matches any node name. � /Dialog/./Datatype

The node list contains all datatype attributes from figure 4. � /^List*/(Entryfield|Outputfield)

The node list contains all entry field and output field nodes in the current context
of which the node path does not contain a ‘List’. � /.*/List/.*/(Entryfield|Outputfield)

Matches all entry fields and output fields inside a List.

3.3 Directives

The order of the pattern application as well as the transformator logic follows the
imperative programming paradigm. The directives are handled one after the other.
Figure 8 shows the BNF for pattern scripts and the possible directives which are ex-
plained in the following sections.

Figure 8: 'BNF for Pattern Scripts and Possible Directives'

3.3.1 Pattern-Definition

Pattern definitions can be directly compared to method- and procedure definitions.
They contain a name through which they are referenced, as well as a list of formal
parameters which is passed when the pattern is applied, and finally a script which
contains the directives to be executed.

Examples

 pattern-script := [pattern-statements]

pattern-statements := pattern-statement
 | pattern-statement pattern-statements

 pattern-statement := stmt-apply-pattern
 | stmt-define-body
 | stmt-define-head
 | stmt-define-pattern
 | stmt-define-variable
 | stmt-define-version
 | stmt-if-then-else
 | stmt-match-pattern
 | stmt-match-patternset
 | stmt-write-output

An Easy Generator-Generator for 'xml-to-text' transformations

Figure 9 shows the syntax which has been derived directly from Java. Likewise, the
shown Egg types correspond to the respective Java types: java.lang.String, ja-
va.io.File, org.w3c.dom.Node and the base type boolean.

Figure 9: 'BNF for the Pattern-Definition'

3.3.2 Pattern-Application

The pattern-application is the counter part to the pattern-definition, as is the method
call to the method definition. There are two actual ways, as shown by figure 10.

For the first way, a preceding pattern definition is referenced using ist pattern name.
Eventual parameters are passed as in a java method call.

In der zweiten Form erfolgt die Anwendung und die Definition zusammen an dersel-
ben Stelle (Inline-Definition). Eventuelle konkrete Parameter werden wie bei einer
Variableninitialisierung direkt den formalen Parametern zugewiesen. Dabei müssen
die Types natürlich übereinstimmen.

When passing a path expression, the parameter type can be either String or Node.
For String-parameters, the Value of the first node in the node list is used for the
path expression. For Node-Parameters, the pattern for each node from the node list is
applied once on the path expression, passing through each node value at a time. This
loop iterates only over the node variable of the pattern, i.e. fo rthe first Node-
Parameter in der parameter list of the pattern. All further parameters are passed as
normal parameters.

While executing a pattern script, there is a context node in the XML input file. All
path expressions of a pattern are evaluated relative to this node. When applying a
pattern, the node passed through the node variable becomes the context node of the
called pattern.

For example, in figure 5 the context node in the pattern ‘DialogmodelGenerator’ is
the ‘Dialog’-Parameter. In the pattern ‘DatafieldDefinition’, it is the ‘Field’-
Parameter.

 stmt-define-pattern := "pattern" pattern-name formal-parameters "{"
 pattern-script
 "}"

 pattern-name := <java identifier>
 variable-name := <java identifier>
 egg-types := "String" | "File" | "Node" | "boolean"

 formal-parameters := "(" [formal-parameter-list] ")"
formal-parameter-list := formal-parameter
 | formal-parameter "," formal-parameter-list
 formal-parameter := egg-types variable-name

An Easy Generator-Generator for 'xml-to-text' transformations

Figure 10: 'BNF for the Pattern-Application'

The ‘generator-definition‘-rule from figure 10 is the entry point for the creation of a
parameter. This directive has to be the first directive in an Egg file. All further direc-
tives then appear in their pattern script.

The inline parameter list contains only one node variable. The context node for the
path expression of the Node-parameter is the document root of the XML entry file.

 stmt-apply-pattern := "apply" pattern-name concrete-parameters ";"

 | "apply" pattern-name inline-parameters "{"
 pattern-script
 "}"

 concrete-parameters := "(" [concrete-parameter-list] ")"
concrete-parameter-list := concrete-parameter
 | concrete-parameter "," concrete-parameter-lis
 concrete-parameter := egg-expr

 inline-parameters := "(" [inline-parameter-list] ")"
 inline-parameter-list := inline-parameter
 | inline-parameter "," inline-parameter-list
 inline-parameter := egg-types variable-name "=" egg-expr

 egg-expr := "<" (variable-name | path-expr) ">"

 generator-definition := "generator" pattern-name inline-parameters "{
 pattern-script
 "}"

An Easy Generator-Generator for 'xml-to-text' transformations

3.3.3 Further Directives

Figure 11: 'BNF for Egg-Path Expressions'

3.3.4 Pattern Sets

Figure 12: 'BNF for Egg-Path Expressions'

4 Installation
Table 1 below gives an overview of the variables which have to be set in the batch
file ‘egg.bat’ in the ‘bin’ directory.

Variable Value to be set

ROOT_DIR Directory into which the generator generator was extracted.

Specify the complete path name including drive letter, e.g.

stmt-define-variable := egg-types variable-name "=" assignment-expr
";"
 assignment-expr := (<java expr code> | egg-expr)*
 variable-expr := "<" variable-name ">"

 stmt-if-then-else := "if" "(" variable-expr ")" "{"
 pattern-script
 "}" ["else" "{"
 pattern-script
 "}"]

 stmt-write-output := (text | variable-expr)*

 stmt-define-version := <version string>

 stmt-define-head := "head" "{"
 <java class header>
 "}"

 stmt-define-body := "body" "{"
 <java class body>
 "}"

 stmt-match-pattern := "match" pattern-name inline-parameters "{"
 pattern-script
 "}"

stmt-match-patternset := "matchset" pattern-name "(" ")" "{"
 pattern-script
 "}"

An Easy Generator-Generator for 'xml-to-text' transformations

d:\dev\egg.

JAVA_HOME Java SDK Directory, Version 1.1 or later.

(e.g. D:\lib\www\java122_7)

Table 1: 'Variables that have to be set for the Installation'

The next step is to create an association for the file extension ‘.egg’. The setting can
be done through the NT Explorer. Choose ‘Tools, Folder Options, File Types’ and
select ‘New.’ The dialog box that appears is completed as shown in figure 13.

Figure 13: 'Register File Type <egg>'

Then click on ‘New’ and define the ‘Open’ procedure following figure 14. The pro-
cedure should be called ‘Open’ so that the created generators can be built with a
double click.

The value of the <ROOT_DIR> place holder must correspond to the entry in table 1.

egg-File Type

An Easy Generator-Generator for 'xml-to-text' transformations

Figure 14: 'Launching the egg Command'

After pressing ‘OK’ twice, the file type is registered with the Explorer.

Now, the ‘DialogmodelGenerator’ from the example in figure 5 and 6 can be gener-
ated. It can be found in the directory <ROOT_DIR>\gen. Simply change to that di-
rectory and double click on the egg file to generate the generator. In Figure 15, a
sample output of a successful ‘egg’-Run for the ‘DialogmodelGenerator’ is shown.

Figure 15: 'Output of a successful egg run'

After the DialogmodelGenerator has been built, the generator output can be created.
Just run the ‘DialogmodelGenerator.bat’ with the ‘Usermanagement.xml’ file, e.g.
dragging the XML file on the batch file using the NT Explorer.

The following output will appear, and the output can be found as ‚Usermanage-
mentDM.java‘.

Figure 16: 'Output of a successful run of the DialogmodelGenerator'

Generator
Creation

Using the Gen-
erator

An Easy Generator-Generator for 'xml-to-text' transformations

References
[1] Extensible Markup Language (XML) 1.0 (Second Edition);

City: http://www.w3.org/TR/REC-xml.

[2] XSL Transformations (XSLT) Version 1.0
City: http://www.w3.org/TR/xslt.

[3] XML Path Language (XPath) Version 1.0
Datei: http://www.w3.org/TR/xpath.

[4] Program Generators with XML and Java, J. Craig Cleaveland, Prentice
Hall, Upper Saddle River, NJ 2001, ISBN 0-13-025878-4

